Noninvasive light-reflection technique for measuring soft-tissue stretch.

نویسندگان

  • J F Federici
  • N Guzelsu
  • H C Lim
  • G Jannuzzi
  • T Findley
  • H R Chaudhry
  • A B Ritter
چکیده

A novel, to our knowledge, sensor for measuring the stretch in soft tissues such as skin is described. The technique, which is a modification of two-dimensional polarization imaging, uses changes in the reflectivity of polarized light as a monitor of skin stretch. Measurements show that the reflectivity increases with stretch. Measurements were made on guinea pig skin and on nonbiological materials. The changes in reflectivity result from the changes that take place in the interface roughness between skin or material layers and the consequential changes in the diffuse reflective characteristics of the skin. Conceptually, as the roughness of an interface decreases, a smoother reflecting interface is produced, resulting in a commensurate increase in specular reflection. A simple roughness model correctly predicts the main experimental results. Results can be extended easily to real-time stretch analysis of large tissue areas that would be applicable for predicting stresses in skin during and after the surgical closure of wounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarized light reflection from strained sinusoidal surfaces.

We propose optical polarization imaging as a minimally invasive technique for measuring the mechanical properties of plastics and soft tissues through their change in reflectance properties with applied strain or force. We suggest that changes in surface roughness are responsible for the linear reflectivity changes with applied stretch or strain. Several aspects of this model are tested, includ...

متن کامل

A method to quantify the fiber kinematics of planar tissues under biaxial stretch.

We have developed a method for measuring fiber kinematics in two-dimensional soft collagenous tissues. The technique combines small-angle light scattering (SALS) and biaxial stretch controlled by simultaneous optical strain measurement. Preliminary findings on porcine aortic valve leaflets and bovine pericardium indicate that fiber kinematics are highly tissue specific and are generally non-aff...

متن کامل

Towards Measurement of Polarization Properties of Skin using the Ellipsometry Technique

Introduction: The human skin is an active medium from the optical point of view. Therefore, the diagnostic and therapeutic techniques employing light are increasing. Current optical techniques are based on the measurement of the intensity of reflected absorbed or backscattered light from or within skin. Studies have shown that biological tissues, and in particular skin, demonstrate polarization...

متن کامل

Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy.

We report a noninvasive fluorescence microscopy method and demonstrate nanometer resolution along the optical axis. The technique is based on the influence of the microscope slide on the angular intensity distribution of fluorescence. Axial positions are determined by measuring the proportion of light emitted below the critical angle of total internal reflection, which behaves in a classical wa...

متن کامل

The Effect of Polarized Laser Radiation on Viscoelastic Properties of Soft Tissue

Background: Laser-tissue interaction on low-level laser therapy (LLLT) has widespread medical applications (e.g., improved wound healing). The tensile strength of radiated tissue by LLLT is known to be increased mainly because of cross collagen bands developed after radiation.Objective: In this work, we studied the instantaneous effect of radiation of polarized laser beam on the viscoelastic ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 38 31  شماره 

صفحات  -

تاریخ انتشار 1999